Natural Language Processing with Deep Learning in Python
What you will learn

Understand and implement word2vec

Understand the CBOW method in word2vec

Understand the skipgram method in word2vec

Understand the negative sampling optimization in word2vec

Understand and implement GloVe using gradient descent and alternating least squares

Use recurrent neural networks for partsofspeech tagging

Use recurrent neural networks for named entity recognition

Understand and implement recursive neural networks for sentiment analysis

Understand and implement recursive neural tensor networks for sentiment analysis
Curriculum
Section 1: Outline, Review, and Logistical Things
Section 2: Beginner's Corner: Working with Word Vectors
Section 3: Review of Language Modeling and Neural Networks
Section 4: Word Embeddings and Word2Vec
Section 5: Word Embeddings using GloVe
Section 6: Unifying Word2Vec and GloVe
Section 7: Using Neural Networks to Solve NLP Problems
Section 8: Recursive Neural Networks (Tree Neural Networks)
Section 9: Theano and Tensorflow Basics Review
Section 10: Legacy Word2vec Lectures
Section 11: Appendix
Course Description
Complete guide on deriving and implementing word2vec, GloVe, word embeddings, and sentiment analysis with recursive nets
Requirements
 Install Numpy, Matplotlib, SciKit Learn, Theano, and TensorFlow (should be extremely easy by now)
 Understand backpropagation and gradient descent, be able to derive and code the equations on your own
 Code a recurrent neural network from basic primitives in Theano (or Tensorflow), especially the scan function
 Code a feedforward neural network in Theano (or Tensorflow)
 Helpful to have experience with tree algorithms
Description
In this course we are going to look at advanced NLP.
Previously, you learned about some of the basics, like how many NLP problems are just regular machine learning and data science problems in disguise, and simple, practical methods like bagofwords and termdocument matrices.
These allowed us to do some pretty cool things, like detect spam emails, write poetry, spin articles, and group together similar words.
In this course I’m going to show you how to do even more awesome things. We’ll learn not just 1, but 4 new architectures in this course.
First up is word2vec.
In this course, I’m going to show you exactly how word2vec works, from theory to implementation, and you’ll see that it’s merely the application of skills you already know.
Word2vec is interesting because it magically maps words to a vector space where you can find analogies, like:

king  man = queen  woman

France  Paris = England  London

December  Novemeber = July  June
We are also going to look at the GloVe method, which also finds word vectors, but uses a technique calledmatrix factorization, which is a popular algorithm for recommender systems.
Amazingly, the word vectors produced by GLoVe are just as good as the ones produced by word2vec, and it’s way easier to train.
We will also look at some classical NLP problems, like partsofspeech tagging and named entity recognition, and use recurrent neural networks to solve them. You’ll see that just about any problem can be solved using neural networks, but you’ll also learn the dangers of having too much complexity.
Lastly, you’ll learn about recursive neural networks, which finally help us solve the problem of negation in sentiment analysis. Recursive neural networks exploit the fact that sentences have a tree structure, and we can finally get away from naively using bagofwords.
All of the materials required for this course can be downloaded and installed for FREE. We will do most of our work in Numpy, Matplotlib, and Theano. I am always available to answer your questions and help you along your data science journey.
This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
See you in class!
TIPS (for getting through the course):

Watch it at 2x.

Take handwritten notes. This will drastically increase your ability to retain the information.

Write down the equations. If you don't, I guarantee it will just look like gibberish.

Ask lots of questions on the discussion board. The more the better!

Realize that most exercises will take you days or weeks to complete.

Write code yourself, don't just sit there and look at my code.
HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE:

calculus (taking derivatives)

matrix addition, multiplication

probability (conditional and joint distributions)

Python coding: if/else, loops, lists, dicts, sets

Numpy coding: matrix and vector operations, loading a CSV file

neural networks and backpropagation, be able to derive and code gradient descent algorithms on your own

Can write a feedforward neural network in Theano and TensorFlow

Can write a recurrent neural network / LSTM / GRU in Theano and TensorFlow from basic primitives, especially the scan function

Helpful to have experience with tree algorithms
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)
Who this course is for:
 Students and professionals who want to create word vector representations for various NLP tasks
 Students and professionals who are interested in stateoftheart neural network architectures like recursive neural networks
 SHOULD NOT: Anyone who is not comfortable with the prerequisites.